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Abstract

A pressure-based multi-block computational method is developed for solving the

incompressible Navier-Stokes equations in general eurvilinear grid systems. The scheme is based

on the semi-implicit type flow solver with the staggered grid. Issues concerning the mass and

momentum flux treatments at the discontinuous grid intexface are addressed. Systematic

numerical experiments for different interface treatments involving (i) straightforward

interpolation, (ii) globally conservative scheme, and (iii) locally conservative scheme have been

conducted. It is demonstrated that mass conservation has to be maintained locally, at the grid

interface, with accuracy compatible with that of the scheme used in interior domain. Direct

interpolation or globally conservative interface treatment of mass flux can not yield solutions

with desirable accuracy.



1. Introduction

The numerical solution of fluid flow equations generally requires the generation of a grid
for the region of interest. For many engineering problems with complex geometries, the
generation of a single structured grid to cover the whole domain with the desirable grid
distribution can be very difficult. For some flow problems with multiple length scales, it is also

hard to generate a single structure grid to resolve all the flow features with reasonable grid

points. These difficulties can be overcome to a limited extent by applying sophisticated grid

generation schemes to construct a single grid with suitable characteristics. However, the degree

of satisfaction achievable with such a process is highly problem dependent. To simplify this

problem, it is becorning more common to use several grids at once, each with a regular grid

structure. The various grids may either overlap in an irregular fashion or patch together. Each

component grid covers a relatively simpler geometry and can be generated individually. Since

grid lines need not be continuous across grid interfaces, local grid refmement and adaptive
redistribution can be conducted more easily to improve the solution accuracy. In the region with

high flow gradients, by using such flexible grid layouts, the total storage and CPU time can be

reduced while achieving the desirable solution accuracy.

In order to make good use of the multi-block method, one need to appropriately handle
the grid interface treatment associated with the flow solver. Because the grid lines may not be
continuous across the block interfaces, interpolation and data communication methods have to

be devised to transfer the information between blocks. These methods should be preferably easy

to implement while maintaining good efficiency and desirable accuracy. Besides these

requirements, for many fluid flow problems containing varying flow gradients, it is often
important to use the conservative interface procedure to ensure that the physical laws are
satisfied there[I,2]. Clearly, these considerations impose serious constraints on the construction

of an interface scheme; furthermore, in some eases the above requirements can conflict with one

another. Simultaneous achievement of both conservation and accuracy can be a very difficult
task.

Some progress has been made in this area, with different goals, for different fluid

physics and multi-block arrangements, including patched and overlapped grids. Patched grids
are individual grid blocks of which two neighboring blocks are joined together at a common grid

line without overlap. With overlapped grids the grid blocks are partially superimposed on each

other to cover the region of interest. Patched grid is relatively easy for data structure
management, but it still has some difficulty with grid generation because of the interface

constraints. Overlapped grid has more flexibility with grid generation, but, in general, its data
management is more complex. For both grids arrangements, issues of interface treatment

regarding both conservation laws and spatial accuracy need to be addressed. In the compressible

flow regime, Rai [3,4] has developed conservative interface schemes for Euler equations

calculation on the patched grid in a general curvilinear coordinate framework, for both explicit

and implicit time integration schemes. Chesshire and Henshaw [5] have developed an overlapped
grid generation method and a set of data structure, and solved the compressible Navier-Stokes
equations. They treat the grid interfaces using interpolation without fluxes conservation. Meakin

[6] has investigated the spatial and temporal accuracy of overlapped grid methods for invicid

moving body problems, using td-linear interpolation for grid interface treatment. He suggests
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that grid resolution is the primary issue. Attempts have been made by Moon and Liou [7] and
Wang and Yang [8] to devise conservative interface schemes for overlapped grids. However,
the issues of the importance of conservative interface treatment versus solution accuracy, and

the requirements in local and global conservation have yet been clearly addressed.

In the incompressible flow regime, some progress has also been achieved. Hinatsu and

Ferziger [9] have solved the unsteady Navier-Stokes equations in complex geometry using an

explicit method. They does not enforce the mass conservation at the grid interface. Yung et al.
[10] have solved the Navier-Stokes equations with a semi-implicit algorithm in the patched
curvilinear grid system. However, the fluxes in general are not treated conservatively across grid

interface. Lai et al. [11] have solved Navier-Stokes equations with the patched curvilinear grid

system. They treats all the diffusion terms implicitly across the grid interfaces by defining
individual nodal points for each block in the common areas. This way, while easy to implement,

does not guarantee the satisfaction of the conservation laws across interface either. Meakin and

Street [12] have solved the unsteady Navier-Stokes equations using the overlapped grid and

applied the method to three-dimensional environmental flow problem. Tu and Fuchs [13] have

developed a computational methodology for Navier-Stokes with emphasis on using an overlapped

grid technique and multigrid method, and applied the method to the unsteady three-dimensional

internal engine flow simulation. Neither work enforces conservative interface treatment.
Henshaw [14] has used a fourth-order accurate method to solve incompressible Navier-Stokes

equations on overlapped grids. In his method, the discrete divergence of the velocity field is not

exactly zero, and a damping term is needed to stabilize the computations. Wright and Shyy [15]

developed a pressure-based multi-block method for solving the incompressible Navier-Stokes

equations on domains composed of an arbitrary number of overlapped grid blocks in the
Cartesian grid system. A locally conservative internal boundary scheme, with f'u:st order

accuracy, is devised to ensure that global conservation of mass and momentum fluxes are

maintained. This methodology has also been extended to the curvilinear coordinates [16].

Clearly, although much progress has been achieved in the composite grid with complex fluid
flow problems computed, some important and fundamental issues still need to be investigated

further. For example, for incompressible flow problems, the mass conservation should be strictly

maintained over the entire flow boundary; otherwise, the compatibility condition will not be
satisfied. For the multi-block method, with which the discontinuous grid interface can be

introduced into the flow domain, the conservative treatment of the mass flux along the grid

interface may be critical for obtaining a converged solution. However, a interface scheme of

lower order accuracy than the interior nodes, although conservative, may not be desirable from

the resolution viewpoint, either. These issues have not been thoroughly investigated.

Furthermore, for incompressible flow problems, the pressure may be only known up to an

arbitrary constant. When the solver is applied to the multi-block grid, the pressure in different

grid blocks may be independent. The coupling of the pressure at the interface can affect the

solution process.

In the present study, the issues of conservation and accuracy of the interface treatment

in a multi-block method is investigated for incompressible viscous flow computations on general

curvilinear staggered grids. Effects of non-conservative and conservative treatments, either only

globally along the whole interface or locally for each computational cell, for mass flux across
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the grid interface on solution accuracy are focused on. The methods are tested for a recirculating
problem with multi-block grids. A variety of numerical experiments with different grid
resolutions are conducted, and the results ate compared with the benchmark solution to assess
the issues involved. The momentum flux treatment involving convection, pressure and viscous
terms at the interface for momentum equations are also discussed.

2. Governing equations and numerical algorithm

The governing equations adopted in this study are the 2-D steady state, incompressible,

constant property, Navier-Stokes equations along with the corresponding form of the continuity

equation.

(pu) + _(pv) = o (la)

a au a (lb)

_(puv) +_(pw) =__ + 0 &, 0_(P_) + (lc)

With the introduction of coordinate transformation _ - _(x,y), 7/ffi _(x,y), the equations above
are cast in the curvilinear coordinates,

_(pU) + _(pV) = O (2a)

-_(p Uu) + _(p Vu) =-yq _ +y¢_P +_.aa[_(qlu_q2u,_)] +..O.a[_(_q2u _+q3u,_)] (2b)3_ _ 3_ J _ J

(2c)

where

U = uy,, -vx_, V ffi vx_ -uy_
q_ffix 2,+y2, _=x_x,+y_y,, cbfx_+y_

J = x_y,- x_y_
A staggered grid system is adopted, as shown in Fig. 1. The scalar variables are located

at the center of the four adjacent grids. Both u and U are located at the midpoint of the east and

west faces of the control volume. Both v and V axe located at the midpoint of the north and
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south faces of the control volume. In terms of the notation shown in Fig. 1, for a node p
enclosed in its cell and surrounded by its neighbors n, s, e, w, the finite-difference

approximation to the conservation laws can be performed by taking the integral of momentum
equations over the control volume and discretizing it. By arbitrarily taking A_=A_-I, the

resulting u- and v-momentum equations yield

[P Uu +Y,_P-j (qsu_-%un)] I_ + [P Vu-y¢P-j (-q2u¢ +q3u,I)] i; = 0 0a)

[PUV-x_-j(q,v{-q2vn)] i_ + [P W+x{P--_(-q2v{ +q3vn)] I_ = 0 (3b)

The equations above can be put into a general difference form:

[PUO-j (qad_¢-q2cbn)] l; + [P VO-j (-q2fb¢+q3_bn)] I:
= S.J (4)

where 4} is the general dependent variable and S is the source term. With appropriate finite

difference schemes representing the convective and diffusive terms at the control volume

boundaries, the discretized equation relating the variable at a central point p and its neighboring

values is obtained [17],

a/bp = a , _,+a.. _.,+a,. _,.+a _cb_+$,, (5)

where a's are the coefficients resulting from the numerical schemes chosen in course of

discretization. The pressure term and cross-derivative portion of the viscous terms due to the

non-orthogonal coordinates are treated here as the source term S,. The continuity and momentum

equations can be used to formulate a pressure correction equation. The pressure correction, pt,

is used to update the pressure field, and in conjunction with a velocity correction formula to

obtain a velocity field satisfying the continuity equation at convergence. The diseretized form

of the pressure correction equation is presented as:

I I+ I + I+ I+,_
appt, = a,p, awp w a,,p, a,p, ap (6)

at, = ac ÷aw+a,,+as

$_, = (pU*)w-(pU*),+(pV'),-(pV*),,

where the superscript * designates the intermediate solution, and pt designates the correction
made. A detailed discussion of this algorithm can be found in Refs. [17,18] and will not be
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repeated here. In single-block grid computations, the solution procedure is as follows: (a) The

momentum equations are solved to obtain the Cartesianvelocity components with the given

pressure field.When solving the momentum equations,the contravariantvelocitycomponents

U and V are calculatedafterupdating each of the velocitycomponents. Co)With the updated U

and V, tbe pressure correctionequation is solved to obtainp/. (c) Tbe velocityand pressure

fieldsarc updated with the solutionof the pressure correctionequation.Procedures (a)-(c)arc

repeateduntilthe momentum and continuityequationsare simultaneouslysatisfiedtothe required

degree of accuracy. The procedure above isa semi-implicitprocedure, which isreduced to the

SIMPLE procedure if the Cartesian grid is adopted [19]. With curvilincarcoordinates, a

combined use of both Cartesianand contravariantvelocitycomponents isdevised.In particular,

while the Cartesian components are the primary dependent variablesin momentum equations,

the contravariantcomponents are correctedfirstin the pressure correctionstep to ensure the

satisfactionof mass continuity.Because of the semi-implicitnatureof the procedure, when the

algorithm is applied to the multi-block grid computation, differentcomputational strategies

between differentgrid blocks can be adopted: (1)Within each grid block,procedures (a)-(c)axe

repeated several times to update the solutionswithout updating the boundary and interface.

Afterwards, the computations arc conducted in the neighboring blocks. Such a block to block

cyclingprocedure continuesuntilconvergence isachieved inallblocks. (2) While solving each

of the u-,v-momentum and pressure correctionequations,iterationisconducted from block to

block, withoutupdating other equations.In other words, procedures (a)-(c)arc conducted inthe

outer loop with the multi-blockcomputation embedded withineach differentialequation.In this

study,strategy(1) isadopted, sinceitallowsthe interfacetreatmentsamong differentequations

to be handled together.The computation continues untilthe mass and momentum residuals,

normalized by the mass and momentum fluxesenteringthe whole domain, in each block meet

the convergence criterion.More informationregardingboth the composite grid techniques and

the pressure-basedalgorithm discussedhcrc om bc found in Shyy [20].

3. Grid interface treatment

The basic arrangement in the present multi-block grid system is that there is at least one

grid layer overlap, for each block, between the adjacent blocks. However, The grid lines from

both blocks need not be continuous in the overlapped region. At grid interfaces, the boundary

conditions for each block are needed in order to solve the equations. Because the grid interfaces

are not the physical boundaries, the interface boundary values are not known a priori and must

be obtained as a part of the whole solution. Some interpolations are needed to acquire the

intermediate interface boundary conditions between neighboring blocks. Then, a block to block
iteration is conducted to obtain the solution in the whole domain.

3.1 Interface treatment for the momentum equations

For the momentum equations, e.g., the u-momentum equation, the fluxes

E[.,_ = pUu + y,_p- j (qlu£-q2u_)
(7a)
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F[_ = p Vu- y_p - -_ (-q2u_+q3u_)
(7b)

could be interpolated directly from neighboring blocks at the interfaces. Since they include

velocity gradient and metric terms, such a direct interpolation does not results in a conservative

solution. In the present treatment, direct interpolation of dependent variables, with adjustment

of pressure to maintain the global momentum conservation at grid interfaces, is adopted. The

quadratic or the linear interpolation can be used [5]. With the staggered grid arrangement, the
interface treatments for the east and west boundaries are different from those for the north and

south boundaries. Here, the east boundary is defined as the grid boundary with grid index

i=i_,._, and the west boundary as with index i= 1. The north and south boundaries are the other

sides with j =j._ and j = 1 respectively.

First consider the evaluation of the flux E at the east or the west interface. Due to the

utilization of the staggered grid, the control volume face at which the u-momentum flux is

evaluated is not at the grid boundary, as illustrated in Fig. 2. The geometric quantities ql, q2 and

J are well defined within the current block. The velocity component u at the grid interface

boundary is interpolated from the neighboring block to evaluate the viscous term in E. The

pressure term at the control volume face is also available within the current block.

Second, consider the evaluation of the flux F at the north or south interface. The control

volume face coincides with the grid interface. The geometric quantities and the viscous terms

are not well defined within the block. With present treatment, the interface grid lines are

extended from the original block to intersect with the neighboring grid lines to form fictitious

interpolation points as illustrated in Fig. 3. Then the geometric quantities are obtained based on

linear interpolation. The u components are interpolated at the fictitious points and both
convection and viscous terms can be evaluated from the values obtained from the original block

and the fictitious nodes. Generally, for curvilinear grid, the pressure term will appear in the flux

F if y_ is not zero. Because the pressure is not defined at the control volume face, either it can

be extrapolated from inside the current block or interpolated from the adjacent block. The latter

one is adopted in this study. With the present solver, the boundary condition for the pressure

correction equation is of Neumman type, which means the pressure is known up to an arbitrary

constant. In the present approach, a pressure adjusting method is used to connect the pressure

fried of different blocks consistently, which is based on the total momentum flux balance across

the interface [15]. This adjustment is conducted between the block to block iterations to keep

the pressure fields compatible between the blocks. The interface treatment above also can be

applied to the v-momentum equation similarly. It is noted that with the present pressure

adjustment procedure, the total momentum fluxes across the grid interface are uniquely

determined for both blocks, resulting in a conservative treatment.

3.2 Interface treatment for the mass flux

In general, two types of boundary conditions can be used for the pressure correction

equation. If the pressure is known at the boundary, the value of the pressure correction there is,

of course, zero. If, instead of the pressure itself, the velocity component normal to the boundary



is prescribed (such as the inflow and solid wall conditions), then, due to the staggered grid
arrangement, the Neummaa type of boundary condition is imposed on the pressure correction.

The value of pressure correction at the boundary is no longer needed. Consider the pressure
correction Eq. (6), suppose the normal velocity component is known at the south boundary, the

equation for a control volume next to that boundary becomes

I ! I+ Ia_p = a,p,÷aj,, a_,+Sp
(Sa)

ap = ac+aw+a,, (Sb)

Sp _- (p U*)w - (p U*), * (p V), - (p V*)m (8c)

Where (pV), is the mass flux from the south boundary and is known, IT" and V" are the

intermediate values to be further corrected by the pressure correction p/. As stated above,p_

does not appear because no =correction" is necessary on the south boundary. Since the continuity

equation is not solved explicitly, the outflow boundary condition should always satisfy the global
mass conservation. Usually, a global mass correction is applied to outflow boundary during the

solving process to help maintaining the global mass conservation. This correction will not affect
the final solution when the process is finally converged. Otherwise, the process will either

converge very slowly or even fail to converge [21]. Now consider the case that the south

boundary is the grid interface. In this situation, (p I,'), is not known as a priori during the

solution process. It can be obtained from the intermediate solution in the overlapped region of
the neighboring block at the previous iteration. But with the discontinuous grid interface, direct
interpolations generally will not satisfy the mass conservation across the grid interface. Non-
conservative error will be introduced at the grid interface and the magnitude of error will depend

on the order of the interpolation method used at the grid interface. In this study, the linear and
quadratic non-conservative interpolations are implemented to investigated the effect of non-
conservative error from the grid interface on the solution. Also, several conservative treatments
of different local and global natures, and of different orders of accuracy are implemented and
are tested.

(a) Interpolation with global conaection:

First, a non-conservative interpolation is used to obtained the mass flux at the interface

from the neighboring block. The total flux evaluated from neighboring block is denoted as F,,

the total interpolated flux is denoted as F_. Second, the mass deficit AF = Fa-F ¢ is computed.

Then the mass flux at each current interface control volume face is added with AFIN (suppose

there are N control volumes on the interface) so that the total flux across the interface is

conserved globally. But this conservation is not enforced locally, and its effect on the solution
in the whole domain need to be assessed.



(b) Piece-wise constant interpolation: Such a scheme is used in Refs. [3,15], which by nature
is locally conservative, but with only first-order accuracy.

(c) Linear (or quadratic) interpolation of mass flux with local conservative correction:
Suppose a portion of an interface, corresponds to the width of a single control volume

of the coarse grid 1, and to the width of several control volumes of the fine grid 2, indexed from

i= 1 to/max. This scenario is shown schematically in Fig. 4, where Vc is the contravariant

velocity component normal to the grid face, normalized by the control volume face length So,

at the coarse grid control volume face, and V/i represents the contravariant velocity component,

normalized by the control volume face length S/_, at the f'me grid control volume face. From

fine grid to coarse grid, V, can be obtained as

imax

i=1

Equation (9) is for the constant density flow. It can be easily extended to account for density
variation. For the sake of simplicity, this aspect is neglected in the current discussion. In this

way, the flux into the coarse grid is uniquely determined from the corresponding free grid fluxes

conservatively. Conversely, given the coarse grid flux VeSt, the conservation constraint yields

the follows:

Imax

E V/rS_a ffi VcS¢ (10)
i=1

In this situation, conservation does not provide unique values for the Va. A certain distribution

has to be chosen to decide each V/_. As a fn'st approximation, V/_ is obtained using the linear
(or quadratic) interpolation of the normalized contravariant velocity in the coarse grid. The

interpolated value is denoted as _. With the first approximation, Eq.(9) is not satisfied. Then

the fine grid fluxes are scaled so that the total flux obtained is V,$,. Accordingly, the values V/i

at the fine grid boundary are computed as follows:

(11)

From Eq.(11), it can be seen that Eq.(9) expressing flux conservation from coarse grid to fine
grid is satisfied and the flux distribution is close to that determined by linear (or quadratic)

interpolation.
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If the grid interface is not exactly matched in the coarse to fine grid manner, as
illustrated in Fig. 5, then, a split-merge procedure is devised in the above mentioned spirit, as

shown in Fig. 6. The control volume in grid 2 can be split into smaller subcontrol volumes. In
this manner, from control volumes in grid 1 to subcontrol volumes in grid 2, the locally
conservative treatment can still be applied on a celloby-cell basis, after the interpolation has
been conducted. After that, the fluxes at the split control volume faces will be merged back to

get the flux at the original control volume face. From grid 2 to grid 1, this same split-merge

treatment is also applicable. The only extra work in this procedure is to create some arrays to
store the intermediate information. Thus, the interface can be treated no matter what kind of
interface arrangement is encountered. This linear (quadratic) interpolation with local correction

treatment is not limited to the mass flux, it also can be applied to the momentum flux
conservative treatment.

3.3 D_ta structure

Because of the possible grid discontinuity, a set of data structure has to be devised to deal

with information transfer between different grid blocks. The data structure should not only
provide the necessary information for the chosen interface treatment but also be as simple as

possible. In the present method, all the data structure information is based on the grid
distribution. The minimum requirement for the grid interface between the two adjacent grid
blocks is that there exists at least one grid layer overlap. For each block, each side of the grid
boundaries may be divided into several segments corresponding to different boundary condition

types. For each segment, the indices of the starting and the ending grid points, the boundary
condition type and the corresponding values of the dependent variables on the physical
boundaries are assigned. If the segment is a grid interface, the block number of the adjacent

block, the identification of overlap direction (in _ or _1 direction), and the number of overlap
layers axe assigned as well. Based on the input above, a series of intersection tests axe conducted

to provide the information for the coefficients for interpolation and conservative treatment. These
coefficients are stored for later use.

4. Nulnerieal experiments and discussions
The test problem is the lid-driven cavity flow problem with Re-- 1000. First, a 3-block

discontinuous Cartesian grid configuration with different grid resolutions is used. A grid system
of 41x21, 81x13 and 41xll grid points for block 1, 2 and 3, respectively, as shown in Fig. 7

is first employed. Here, the interface between block 1 and 2 coincides with the cavity horizontal

center line. The second grid system doubles the grid resolutions of the fwst system, and has

81x41,161x23 and 161x21 grid points in each block, respectively. The third grid system doubles

the grid resolution in x direction of the second grid system and has 161x41, 321x23 and 161x21

grid points in three blocks. To clarify the terminology, the composite grid for the whole flow
domain is called a "grid system" here. Each grid system consists of several blocks. The first grid

system described above is denoted the coarse grid system, the second the median grid system,
and the third the fine grid system. The three grid systems share the same topological

characteristics in each block. We have created these three systems to investigate the interplay

of interface treatment and overall grid resolutions. The grid layouts are not ideally suitable for
the present recirculating flow, they are purposely set up to test the relative merits of different
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interface treatments. For all the test cases presented in this work, the second-order central

difference is used for convection, diffusion and pressure terms.

Case 1. The Cartesian velocity components u and v and the contravariant velocity

components U and V are linearly interpolated at the grid interfaces. Total momentum fluxes

across the interface are conserved via the pressure adjustment. No mass conservation is enforced

across the grid interfaces. The computations axe conducted over the coaxse, median and fine grid

systems. For all three grid systems, the normalized residuals for u and v momenta are below

104. The normalized mass residuals reach down to 1.5x10 "3, 3.3x104 and 1.3x104 for the

coaxse, median and free grid systems, respectively, and stab'tUze at those levels. Figures 8a and

8b show the u-component distributions along the vertical center line and v-component

distributions at the horizontal center line; they axe compaxed with the corresponding benchmark

solution reported by Ghia et al.[22]. It can be seen that the solutions for all the three grid

systems have substantial discrepancies with respect to the benchmark values. Although in

general, the solutions improve as the grids axe reffmed, the overall performance of all three

systems axe unsatisfactory. It is noted that for this problem computed with single grid distributed

uniformly, a 81x81 grid system can yield very accurate solution already [23]. Accordingly, it

is unsatisfactory to observe that both median and free grid systems, even with resolutions better

than the 81x81 single uniform grid, still do not yield accurate solutions. Figure 8c shows the

interface pressure distributions computed on block 1 and 2. The pressure in each block has been

adjusted according to the total momentum flux balance at the interface. The absolute value of

the pressure has no practical meaning. For a well converged solution, the pressures from

different blocks are expected to have the same distributions at the interface; in the current case,

even with the fine grid system, the discrepancy between the two pressure distributions is
obvious.

Case 2. Both the Cartesian velocity components u and v and the contravariant velocities

U and V are quadratically interpolated, but still without enforcing mass conservation. This

procedure is of higher interpolation accuracy than case 1; however, both axe without

conservative treatment. The motivation here is to test the role played by the interpolation

accuracy, and to investigate that for viscous flow, whether conservative treatments are necessary

for obtaining satisfactory solutions. For all three grid systems, the residuals for the momentum

equations axe below 10 4. The mass residuals stabilize at the level of 2.3x10 3, 4.3x10 "_ and

7.5x10 4 for the coarse, median and free grid systems, respectively. Figures 9a and 9b show the

u-component and v-component distributions respectively for the three grid systems. Overall,

these solutions are more accurate than those shown in Fig. 8, and the solution on the fine grid

system shows obvious improvement over the coarse and median grid systems. However,

discrepancies still exist between the present and the benchmark solutions. Figure 9c shows the

pressure distributions from block 1 and 2 at the interface. The discrepancy between the two

distributions also still exist. From cases 1 and 2, it can be seen that the solution can be improved

with the grid refinement. The overall solution accuracy is better with quadratic interface

interpolation than with linear interpolation, which is expected because the quadratic interpolation

increases the order of interpolation accuracy and should reduce the non-conservative error for

mass flux across the grid interfaces. But even with the free grid system, the solution of quadratic

interpolation is still not satisfactory. Since with both interpolation schemes, the solutions axe not
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as accurate as the single continuous grid results, the source of this inaccuracy must come from

the non-conservative interface treatments across discontinuous grid blocks.

Case 3. Since the non-conservative linear and quadratic interpolations for the

contravafiant velocities cannot lead to a satisfactory solution even for a very free grid, a

conservative interface treatment is then tested. In this case, the Cartesian velocity components

u and v are linearly interpolated. The contravariant velocities U and V are linearly interpolated

first, followed by a global correction procedure for mass flux as discussed previously. The

computation is conducted for the coarse grid system only. The momentum and mass flux

residuals reach to the level of 10 "5. The results axe shown in Figs. 10a, 10b and 10c. Obviously,

the solution is not satisfactory. It appears that the conservative interface treatment conducted at

the global level does not improve the solution accuracy.

Case 4. The Cartesian velocity components u and v are still linearly interpolated. The

contravariant velocities U and V are interpolated based on the piecewise constant formula, which

by nature is locally conservative with first-order accuracy. This treatment is implemented to

investigate the effect of the local conservation on the solution. The computations are conducted

for the three grid systems. For the coarse and median grid systems, the residuals for the

momentum and mass fluxes reach down to 10. 5. But for the fine grid, the solution does not

converge. Figures lla and 1 lb present the u and v component distributions for the coarse and

median grids. Both u and v profiles agree well with the benchmark solutions. Figures llc and

1 ld exhibit the pressure distributions at the interfaces of block I and 2 for two grid systems. The

pressures in the interface region obtained on different blocks follow each other generally well,

except that high wave number oscillations appear on block 2. The cause of this nonphysical

oscillation comes from the fact that the mass flux distributions in the overlapping region of the

fine grid cells are assigned according to the piecewise constant formula. This distribution

formula results in a series of stair-step mass flux profile on the fine grid block, forcing the

pressure field to oscillate in response to the non-smooth mass flux distribution. This same reason

is also probably responsible for the nonconvergence of the fine grid system.

Case 5. The Cartesian velocity components u and v are linearly interpolated. The

contravariant velocities U and V are linearly interpolated first, followed by a local correction

to maintain the cell-by-cell mass conservation across the interfaces. The residuals for momentum

and mass fluxes reach down to 10. 5. Figures 12a and 12b show the u and v component

distributions for three grid systems. The solution for the coarse grid system shows a very small

discrepancy compared to the benchmark solution; the solutions on the median and fine grid

systems agree very well with the benchmark solution. Figure 12c displays the pressure

distributions at interface of block 1 and 2 for the fine grid system. The pressure distributions

from the two adjacent grid blocks conform to each other very well. Clearly, local conservation

holds a key to produce satisfactory solution accuracy.

Case 6. The Cartesian velocity components u and v are quadratically interpolated. 27ze

contrava_ant velocities U and V are quadratically interpolated first, and then a local correction

is applied to maintain the mass conservation across the interfaces. Again, the computations axe

conducted over the three grid system and the residuals are at the level of 10. 5. Figures 13a and

12



13b show the u and v-component distributions. Good agreements, comparable to Case 5 (Fig.

12) between the current solutions and the benchmark solution are observed. Figure 13c presents

the pressure distributions at block 1 and 2 interface for the fine grid system. The pressure
distributions at the interface also conform to each other very well. For the present flow problem

both the linear and quadratic interpolation with local correction give the satisfactory solutions.
Since the discretization scheme for the interior cells are second-order accurate, it appears that

a linear interpolation (aided with the follow-up local conservation treatment) procedure is
sufficient.

Case 7. Finally, the same flow problem is investigated with a 3-block curvilinear grid,

which has 81x41, 161x23 and 81x21 grid points for block 1 ,2 and 3, respectively, as shown

in Fig. 14. The interface treatment is the same as that in Case 5, and the momentum and mass

residuals reach to 10"5. Figure 15 demonstrates the u velocity component distribution at the

vertical center line and compares it to the corresponding benchmark solution. Good agreement

is obtained; illustrating the flexibility of the curvilinear grid system.

5. Conclusions
A pressure-based multi-block computational method has been developed for solving the

incompressible Navier-Stokes equations in a general curvilinear grid system. For the momentum

equations, the pressure fields between two adjacent blocks allow an arbitrary jump, which can

be adjusted by conserving the total momentum fluxes across the block interface. The importance
of maintaining local mass flux conservation across the interface with certain accuracy is

illustrated through a series of numerical experiments. Specifically, both the linear and quadratic

interpolations without conservative measure for the mass flux at the interface earmot lead to the

desired solution even for very free grid. Linear interpolation with global correction for mass flux

does not improve the solution, either. The piecewise constant treatment can improve the solution
accuracy due to its conservative nature, but creates artificial pressure oscillation due to non-
smooth mass flux distribution in the fine grid block. Nevertheless, it illustrates the importance

of local mass flux conservation across the interface. Both linear and quadratic interpolations,

with local conservative correction prove to be good choices. The fact that their solutions are of

very comparable accuracy indicates that (1) the interface treatment needs not to be of higher

formal order of accuracy than the interior schemes, and (2) the local conservative mass flux

treatment at interface holds a key for composite grid computations.
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Fig. 13 Solution profiles based on quadratic interpolation with local correction
of mas conservation for U and V
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